Муниципальное автономное общеобразовательное учреждение города Набережные Челны «Лицей №78 им. А.С. Пушкина»

Принято на педагогическом совете МАОУ «Лицей № 78» Протокол №1от 29.08.2024 г.

Утверждаю Директор МАОУ «Лицей №78 им. А.С. Пушкина» ______М.Ю. Григорьев Приказ №110 от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА КУРСА

«Избранные вопросы математики»

11 класс

Направление развития личности: интеллектуально-познавательное

Срок реализации: октябрь 2024 – май 2025 года

Разработчик: Долгорукова И.Н., учитель математики высшей квалификационной категории

Пояснительная записка

Образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентностного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентаций. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.

Главной целью образования является развитие ребенка как компетентной личности путем включения его в различные виды деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Сегодня, в век информационного общества без базовой математической подготовки невозможна постановка образования современного человека и для жизни в этом обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках.

Среди многочисленных приемов работы, ориентированных на интеллектуальное развитие школьников, является курс по математике. Научно-методическая литература, посвященная подготовке учащихся к математическим олимпиадам не системна. Многие публикации представляют собой изложение вариантов использования занимательных задач на внеурочных математических занятиях. Зачастую эти задачи представлены без относительного содержания учебной программы, определенной логики, в большей степени ради занимательности. Появилась потребность разработать программу занятий курса по математике с учетом:

- а) создания ориентационной и мотивационной основы для осознанной подготовки учащихся к олимпиадам;
- б) специфики контингента общеобразовательного учреждения повышенного уровня, которое требует интенсивности образовательного процесса обучения;
- в) разного уровня сложности изучаемого материала (для нахождения оптимального уровня работы с определенной группой учащихся);
- г) ее целостности (начиная с 5-го класса и заканчивая 11 классом).

Актуальность создания программы обусловлена совершенствованием содержания занятий курса по математике как ведущей формы дополнительного математического образования и форм работы по повышению уровня математических знаний, требующих обновления и теоретического обобщения.

Основу программы составляют инновационные технологии: личностно-ориентированные, адаптированного обучения, индивидуализация, ИКТ-технологии.

Содержание курса обеспечивает преемственность с традиционной программой и представляет собой расширенный углубленный вариант наиболее актуальных вопросов базового предмета – математика.

Программа реализуется в творческих работах учащихся, проектной деятельности и других инновационных технологиях, используемых в системе работы курса, направленных на развитие у учащихся интереса к предмету, творческих способностей, навыков самостоятельной работы. Данная практика поможет им успешно овладеть не только общеучебными умениями и навыками, но и осваивать более сложный уровень знаний по предмету, достойно выступать на олимпиадах и участвовать в различных конкурсах.

Цели:

- 1. Углубление знаний учащихся через изучение дополнительных тем школьного курса математики.
- 2. Развитие логического мышления.
- 3. Развитие творческих способностей и исследовательских умений.
- 4. Воспитание настойчивости, инициативы, самостоятельности.

Реализации целей:

- 1.Изучение дополнительных тем школьного курса математики.
- 2. Обучение стандартным методам решения нестандартных задач.
- 3. Различные формы проведения занятий (лекции, семинары, мини-олимпиады)

Планируемые результаты

В результате изучения курса ученик должен знать/понимать/уметь:

- овладеть математическими знаниями;
- усвоить аппарат уравнений и неравенств, как основного средства математического моделирования прикладных задач;
- изучить методы решения планиметрических задач;
- изучить свойства геометрических тел в пространстве, развить пространственные представления, усвоить способы вычисления практически важных геометрических величин и дальнейшее развитие логического мышления;
- изучить функции как важнейшего математического объекта средствами алгебры и математического анализа, раскрыть политехническое и прикладное значение общих методов математики, связанных с исследованием функций;
- сформировать качества мышления, характерные для математической деятельности;
- сформировать представление о методах математики;
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- учащиеся должны знать и правильно употреблять термины "уравнение", "неравенство", "система", "совокупность", "модуль", "параметр", "логарифм", "функция", "асимптота", "экстремум";
- знать методы решения уравнений;

Содержание курса

1. Метод математической индукции; разновидности (16 часов):

Задачи комбинаторно-логического характера. Доказательство тождеств, неравенств Принцип наименьшего элемента. Индукция в геометрии

2. Основы теории чисел (12 часов):

Основная теорема арифметики. Линейные диофантовы уравнения

Системы линейных диофантовых уравнений. Простейшие диофантовы уравнения второй степени.

Пифагоровы тройки. Элементы теории сравнений. Малая теорема Ферма, теорема Эйлера, теорема Вильсона

3. Методы решения олимпиадных задач (20 часов):

Принцип Дирихле. Правило крайнего. Инварианты.

Четность, нечетность. Игры, турниры, стратегии и алгоритмы

Задачи на раскраски, укладки, замощения

4. Многочлены (8 часов):

Делимость многочленов. Корни многочленов. Теорема Виета для многочленов произвольных степеней.

6. Неравенства (4 часа):

Классические неравенства о средних.

Календарно-тематическое планирование курса

№	Изучаемый раздел, тема учебного материала	Кол-во	Пример. сроки	Факт.сроки
		часов		
	Метод математической индукц	ции; разнов	идности (16ч)	
1	Задачи комбинаторно-логического характера.	4		
2	Доказательство тождеств, неравенств	4		
3	Принцип наименьшего элемента	4		
4	Индукция в геометрии	4		
	Основы теории ч	нисел (12ч)		
5	Основная теорема арифметики	1		
6	Линейные диофантовы уравнения	1		
7	Системы линейных диофантовых уравнений	2		
8	Простейшие диофантовы уравнения второй	2		
	степени			
9	Пифагоровы тройки	1		
10	Элементы теории сравнений	1		
11	Малая теорема Ферма	2		
12	Теорема Эйлера, теорема Вильсона	2		
	Методы решения олимп	иадных зада	ач (20ч)	
15	Принцип Дирихле.	2		
16	Правило крайнего	2		
17	Инварианты.	2		
18	Четность, нечетность	2		
19	Игры, турниры, стратегии и алгоритмы	3		
20	Игры, турниры, стратегии и алгоритмы	3		
21	Задачи раскраски, укладки, замощения	3		
22	Задачи раскраски, укладки, замощения	3		
	Многочлень	і (12ч)		
29	Делимость многочленов	3		
30	Корни многочленов	2		
31	Теорема Виета для многочленов	3		
	произвольных степеней			
33	Классические неравенства о средних.	2		
34	Классические неравенства о средних.	2		

Литература

- 1. Агаханов Н.Х, Подлипский О.К. Математические олимпиады Московской области. Изд. 2-е, испр. И доп. М.: Физмат книга, 2006.
- 2. Агаханов Н.Х, Богданов И.И, Кожевников П.А, Подлипский О.К, Терешин Д.А. Математика. Всероссийские олимпиады.

Вып. 1. – М.: Просвещение, 2008.

- 3. Горбачев Н.В. Сборник олимпиадных задач по математике. М.: МЦНМО, 2005.
- 4. Денищева Л.О, Карюхина Н.В, Михеева Т.Ф. Учимся решать уравнения и неравенства. М.: «Интеллект-Центр», 2000.
- 5. Ковалева С.П. Олимпиадные задания по математике. Волгоград «Учитель», 2007.
- 6. Кононов А.Я. Математическая мозаика. Занимательные задачи для учащихся 5–11 классов. М.: Педагогическое общество России, 2004.
- 7. Материалы городских математических олимпиад, $1998\Gamma 2010\Gamma$.
- 8. Маркова И.С. Новые олимпиады по математике. Ростов на Дону «Феникс», 2005.
- 9. Петраков И.С. «Математические кружки в 8 -10 классах. Книга для учителя», М.: Просвещение, 1987.
- 10. Семенова А.Л, Ященко И.В. Математика. Экзамен. М., 2010.
- 11. Триг Ч. Задачи с изюминкой. М.: «Мир», 1975.
- 12. Федоров Р.М, Канель-Белов А.Я, Ковальджи А.К, Ященко И.В. Московские математические олимпиады, 1993 2005г. /

Под ред. Тихомиров В.М. – М.: МЦНМО, 2006.

- 13. Шарыгин И.Ф. Задачи по геометрии. М.: «Наука», библиотечка «Квант», выпуск 17, 1982.
- 14. Шеховцов В.А. Решение олимпиадных задач повышенной сложности. Волгоград «Учитель», 2009.
- 15. И.Ф. Шарыгин. Факультативный курс по математике. Решение задач. 10 класс. М., Просвещение. 1991.
- 16. И.Ф. Шарыгин. Факультативный курс по математике. Решение задач. 11 класс. М., Просвещение. 1991.
- 17. Интерактивная доска.
- 18. Комплект чертежных инструментов.
- 19. Интернет-ресурсы, ЭОР.